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Abstract

Motivation: The use of human genome discoveries and other established factors to build an accurate risk prediction
model is an essential step toward precision medicine. While multi-layer high-dimensional omics data provide unpre-
cedented data resources for prediction studies, their corresponding analytical methods are much less developed.

Results: We present a multi-kernel penalized linear mixed model with adaptive lasso (MKpLMM), a predictive model-
ing framework that extends the standard linear mixed models widely used in genomic risk prediction, for multi-
omics data analysis. MKpLMM can capture not only the predictive effects from each layer of omics data but also
their interactions via using multiple kernel functions. It adopts a data-driven approach to select predictive regions as
well as predictive layers of omics data, and achieves robust selection performance. Through extensive simulation
studies, the analyses of PET-imaging outcomes from the Alzheimer’s Disease Neuroimaging Initiative study, and the
analyses of 64 drug responses, we demonstrate that MKpLMM consistently outperforms competing methods in
phenotype prediction.
Availability and implementation: The R-package is available at https://github.com/YaluWen/OmicPred.
Contact: y.wen@auckland.ac.nz
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The use of human genome discoveries and other established risk fac-
tors for predicting disease risk is an essential step toward precision
medicine, an emerging model of healthcare that tailors treatment
strategies based on individuals’ profiles (Ashley, 2015). The advert
of high-throughput multi-platform genomic technologies has led to
the accumulation of diverse types of molecular data (e.g. genome,
transcriptome, methylome and proteome data) (Boekel et al., 2015).
Each type provides a unique, complementary and partially inde-
pendent view of the disease mechanisms, and thus embeds the essen-
tial information for building an accurate risk prediction model.
Therefore, an integrative framework that simultaneously utilizes
multi-omics data can substantially deepen our understanding of her-
editary and environmental causes in disease etiology (Ritchie et al.,
2015).

In the existing literature, many strategies have emerged to inte-
grate multi-omics data for association studies (Bersanelli et al., 2016;
Morris and Baladandayuthapani, 2017; Zeng and Lumley, 2018).
The main objectives of these studies usually are to understand the

inter-relationships among various omics data and to detect
phenotype-related modules (Bersanelli et al., 2016). For example, un-
supervised matrix factorization methods [e.g. iCluster (Shen et al.,
2009) and JIVE (Lock et al., 2013)] project the variations among
multi-omics data on to a dimension-reduced space that includes a
common basis space capturing the coherent patterns across all data
types. Correlation-based methods [e.g. canonical correlation analysis
(Lin et al., 2013b) and partial least squares (Chen and Zhang, 2016)]
maximize the correlations between multi-omics data and find the fun-
damental relationships among them. Mixed graphical models and
Bayesian methods [e.g. FuseNet (Zitnik and Zupan, 2015) and
Prob_GBM (Cho and Przytycka, 2013)], which make explicit
assumptions on the distributions of various data types and the de-
pendency structures, build a probabilistic framework to model and es-
timate relationships among multi-omics data. Multi-step (or multi-
stage) methods, which find relationships between multi-omics data
first and then between multi-omics and the phenotype of interest, are
commonly used strategy to detect phenotype-related modules. For ex-
ample, SNF (Wang et al., 2014) first integrates different data types by
constructing a network for each data type, and then fuses these
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networks into one comprehensive network that is further used for pa-
tient classifications. rMKL-LPP (Speicher and Pfeifer, 2015) first uses
a multiple kernel learning algorithm, where the multi-omics data are
projected to a lower dimensional and integrative subspace, and then
clusters patients using k-means based on the distance derived from
the multi-kernel learning algorithm. While the existing methods offer
important advances for multi-omics data analyses, they are typically
designed for the discovery of molecular mechanisms and sample clas-
sifications. Therefore, they are not directly applicable for predicting
the disease outcomes, especially for continuous outcomes.

Most common diseases, such as type 2 diabetes and cancers, are
affected by multiple variants through complex biological pathways,
and thus progress toward accurately predicting phenotypes requires
the advanced analytical methods that can model all variants from
various molecular levels jointly (Morris and Baladandayuthapani,
2017). Linear mixed models (LMMs), the method of choice for pre-
diction modeling with single-layer genomic data, have considerable
potential to be extended for multi-omics data (Speed and Balding,
2014; VanRaden, 2008; Weissbrod et al., 2016; Yang et al., 2010,
2011). At the core, LMMs assume that genetically similar individu-
als have similar outcomes, and relate the outcomes with genetic
similarity matrix (GSM) through specifying a random effect for each
GSM. GSM, which is used to encode various types of genetic effects,
is traditionally estimated by theoretical kinship coefficients but now-
adays determined by variants from genome-wide data (Speed and
Balding, 2014; VanRaden, 2008; Weissbrod et al., 2016; Yang
et al., 2010). For example, genomic best linear unbiased prediction
uses a random effect term in LMM to model the disease outcome,
where the correlation structure is specified according to the GSM
estimated directly from whole-genome data (VanRaden, 2008). The
recently developed MultiBLUP uses multiple random effects to allow
for different effect sizes of genetic variants located at various genom-
ic regions (e.g. coding and eQTLs), where the covariance structure
for each random effect is determined by the GSM estimated from
the genetic variants within the region (Speed and Balding, 2014).
Multi-kernel linear mixed model (MKLMM) generalizes
MultiBLUP by using kernel functions under the reproducing kernel
Hilbert space to estimate GSMs for each genomic region so that the
nonlinear effects within each genomic region can be considered
(Weissbrod et al., 2016).

LMM-based methods encode genetic effects from multiple var-
iants through the GSMs, which substantially reduces the dimension
of genomic data and makes it appealing for high-dimensional gen-
omic data analyses. Similar idea can be adopted for modeling high-
dimensional multi-omics data, where the genetic similarities are
replaced by omics-similarities. Though promising, there are several
challenges for directly adopting the LMM framework for risk pre-
diction analysis on multi-omics data. Multi-omics data with each
omics data being high-dimensional have a huge amount of noise.
Utilizing omics-similarities that are constructed based on all genom-
ic regions and all available omics data can substantially attenuate
the effects of predictive regions, and thus reduce the robustness and
accuracy of the prediction model. The underlying biological rules
can introduce a hierarchical structure to the measured variables
from multi-omics data (Morris and Baladandayuthapani, 2017). For
example, methylation can change the activity of a DNA segment,
and it typically represses the gene expression when located at a gene
promoter region. A recent study showed that there is strong evidence
for interaction between genotype and methylation on change in
triglycerides (Fisher et al., 2018). The complex intra/inter-
relationships among multi-omics data and their dependent effects on
the disease outcome can raise modeling and inferential challenges
(Zeng and Lumley, 2018). The existing LMMs that usually assume
the effects of genetic variants are independent and thus cannot dir-
ectly be applied to model multi-omics data. Furthermore, interac-
tions widely exist and it is crucial to capture the potential
interaction effects while building prediction models (Buil et al.,
2015; Moore and Williams, 2009). While most of the existing
LMMs focus on additive effects, few have investigated the high-
order interactions from genome-wide data (Weissbrod et al., 2016).
Though the recent proposed MKLMM has the potential to model

the high-order interactions by using kernel functions under RKHS, it
only uses one kernel (e.g. linear or saturate pathway kernels) per re-
gion and thus only accounts for one specific effect. As the genetic
architecture of complex diseases is unknown in advance and differ-
ent omics data types may have different kinds of effects on the dis-
ease outcome, it is suboptimal to use only one kernel function to
capture the predictive effects from all layers of omics data. A data-
adaptive algorithm that can choose multiple kernel functions from
the data to capture various types of effects is needed.

To address these challenges, we develop a multi-kernel penalized
linear mixed model (MKpLMM) for prediction analysis on high-
dimensional multi-omics data. The MKpLMM (i) uses multiple ran-
dom effects to allow for heterogeneous effect size distributions from
different regions, (ii) adaptively selects multiple appropriate kernel
functions for each predictive region and accounts for potential inter-
actions among multi-omics data and (iii) provides the theoretical
justification for the selections of predictive regions (i.e. selecting ran-
dom effects) and predictive variants (i.e. selecting fixed effects)
under high-dimensional settings. The proposed MKpLMM is a flex-
ible framework for risk prediction analyses on multi-omics data,
where nonlinear effects among multi-omics data can be modeled
and predictive regions can be efficiently selected. In the following
sections, we will lay out the details of the MKpLMM method and its
theoretical properties. We will compare its accuracy with other
methods, and illustrate it through applications to datasets from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Saykin
et al., 2010) and the drug responses in chronic lymphocytic leukemia
(CLL) patients study (Dietrich et al., 2017).

2 Materials and methods

MKpLMM extends LMMs used for genomic data analyses via ker-
nelization of its covariance matrix and penalizing the log-likelihood
function to obtain sparse solutions. In the following sections, we
will first briefly overview LMMs and then present our model for
multi-omics data analysis. Finally, we will present a kernel principle
component analysis to deal with the potential correlations.

2.1 Prediction with linear mixed model
For the prediction modeling with genomic data, LMM assumes that
the outcome vector of n individual (denoted by Y) is influenced by
demographic variables (denoted by Xd), genetic effects from the rth
region (denoted by gr) and a random error (denoted by �) via

Y ¼ Xdbd þ
XR

r

gr þ �; (1)

where gr � Nð0;Krr2
r Þ and � � Nð0; Inr2

e Þ. Kr is the GSM for the
rth region, bd is the effects of demographic variables (e.g. age and
gender), and R is the total number of regions considered. A com-
monly used GSM for genetic data is Kr ¼ GrG

T
r =pr, where Gr is a

n� pr matrix of genotypes located on region r. If this holds for every

regions, then Equation (1) can be written as, Y ¼ Xbd þ
PR

rPpr

j Grjcrj þ �, where crj � Nð0; r2
r =prÞ, Grj is the jth column of Gr,

and crj is its effect size.
Based on a similar idea, for multi-omics data modeling, we as-

sume the outcome vector can be modeled as a sum of omics’ effects
(denoted by Or) from predictive genomic regions. We further as-
sume that the omics’ effects from each region can be decomposed
into omic-specific effect and their corresponding interactions. Here
we use gene boundary to define regions, but other criteria (e.g. path-
way) can also be used to define regions. The general form of our
model can be written as

Y ¼ Xdbd þ
XR

r

Or þ � ¼ bþ
XR

r

X
j2Or

or
j þ �; (2)

where or
j � Nð0;Kr

j r
2
rjÞ and � � Nð0; Inr2

0Þ. We use X ¼ ðXd ;XoÞ to

denote fixed effect variables with Xd being a n� pd dimensional
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demographic variables and Xo being a n� po dimensional predictors

from omics data that are treated as fixed effects. b ¼ ðbT
d ;b

T
o Þ

T are
fixed effects with bd being a pd � 1 vector of fixed effects for demo-
graphic variables and bo being a po � 1 vector of fixed effects for
omics predictors. Or is the set of all omics-effects including potential
interaction effects (e.g. genetic effect, methylation effect and inter-
action effect between genetic variants and methylation levels) con-
sidered in region r, and or

j is the jth omics effect from region r.

For example, we consider genomic, methylation and gene ex-
pression data. We define regions based on gene, and assume that
gene expression is an outcome of the joint regularization of genetic
and epigenetic effects. We treat the predictive effects from gene ex-
pression data as fixed effects, and only consider interactions be-
tween methylation and genomic data. Model (2) can be written as,

Y ¼ Xdbd þ Xobo þ
XR

r

X
j2ðg;m;gmÞ

or
j þ e; (3)

where Xo is a n� po dimensional matrix of gene expression data
and bo is their effects. or

g � Nð0;Kr
gr

2
rgÞ; or

m � Nð0;Kr
mr2

rmÞ and
or

gm � Nð0;Kr
gmr2

rgmÞ represent the genetic effect, methylation effect
and the interaction effect between genetic variants and methylation
levels at each CpG site located on region r, respectively. Kr

g ; Kr
m and

Kr
gm respectively denote the similarity in genetic variants, methyla-

tion levels and their interaction for region r. If linear kernel is used
for both genetic data and methylation data, then Kr

g ¼ GrG
T
r =prg

and Kr
m ¼MrM

T
r =prm, with Gr(Mr) being a n� prg (n� prm) matrix

denoting the genotypes (methylation levels) for region r and prg

(prm) being the number of genetic variants (CpG sites) for region r.
For simplicity, here we only consider pairwise interaction effects
and define Kr

gm as Kr
gm ¼ Kr

g � Kr
m with � being the Hadamard prod-

uct, then Equation (3) is equivalent to

Y ¼ Xbd þ
XR

r

Xorb
e
r þ

XR

r

Xprg

j

Grjb
g
rj þ

XR

r

Xprm

j

Mrjb
m
rj

þ
XR

r

Xprm

l

Xprg

j

MrlGrjb
f
rlj þ e;

where be
r is the gene expression effect, bg

rj � Nð0; r2
rg=prgÞ is the ef-

fect of the jth genetic variant from the rth region, bm
rl �

Nð0; r2
rm=prmÞ is the effect of methylation level on lth CpG site from

the rth region and bf
rlj � Nð0; r2

rf =prf Þ is their pairwise interaction
effect.

The proposed model (2) can model more complicated settings.
For example, the region can be defined based on pathways and we
wish to consider pairwise and three-way interactions among all
omics data, Y ¼ Xdbd þ

PR
r

P
j2Or

or
j þ �; or

j � Nð0;Kr
j r

2
rjÞ, where

Or ¼ ðe; g;m; eg; em; gm; egmÞ. or
e; or

g and or
m respectively represent

the transcriptomic, genomic, methylation effects. or
eg ; or

em; or
gm re-

spectively denote the interaction effects between genetic variants
and gene expression levels, methylation and transcriptomic levels, as
well as genetic variants and methylation levels. or

egm is the inter-
action effect among gene expression levels, genetic variants and
methylation levels from the rth region.

Supposed that phenotypes are measured for individuals indexed by
S and we want to make predictions for those individuals in the set T,
where phenotypes are unknown. Given the parameter estimates, the

predicted values can be obtained as Ŷ T ¼ XT b̂þ
PR

r

P
j2Or

ôrT
j , where

ôrT
j ¼ Kr

j ðKr
jSSÞ
�1ôrS

j ; Kr
jTS and Kr

jSS are sub-matrices of Kr
j defined by

the subscripts, and ôrS
j are estimated from model (2).

2.2 Penalized maximum likelihood estimator
The underlying causes for many complex diseases are unknown in
advance, and thus it is quite likely that a substantial amount of
regions included in the analyses are not predictive, especially for
high-dimensional data. Moreover, it is possible only some layers of
omics data are predictive. Therefore, including all omics layers and

their possible interactions in the analyses can attenuate the effects of
predictors and result in sub-optimum performance. Variable selec-
tion is of great importance for prediction analyses on high-
dimensional multi-layer omics data (Byrnes et al., 2013; Morris and
Baladandayuthapani, 2017). As the proposed LMM framework is
very flexible and can be easily adapted to various situations, its vari-
able selection procedure involves both fixed and random effects. For
example, for model (3), the selection of genes whose expression lev-
els are predictive involves the selection of fixed effect (i.e. bo ¼ 0),
and the selection of CpG sites and genetic variants requires the selec-
tion of random effects (i.e. r2

rg ¼ 0; r2
rm ¼ 0, and r2

rgm ¼ 0).
A natural choice for simultaneously selecting and estimating parame-

ters from LMMs is to add a L1 type penalty to the log-likelihood func-
tion. Under model (2), we use hr ¼ [j2Or

ðr2
rjÞ to denote all the

parameters for random effects in region r and homics ¼ ðhT
1 ; h

T
2 ; . . . ; hT

RÞ
T

to denote all parameters related to random effects. Let h ¼ ðr2
0; h

T
omicsÞ

T ,

and / ¼ ðhT ; bTÞ. The log-likelihood function for model (2) is

lð/Þ ¼ �1

2
log jRj � 1

2
ðY � bÞTR�1ðY � bÞ; (4)

where R ¼ Inr2
0 þ

PR
r

P
j2Or

Kr
jr

2
rj. The corresponding penalized

log-likelihood function with L1 penalty is,

lpð/Þ ¼ lð/Þ � k1jx1hj1 � k2jx2bj1; (5)

where k1 and k2 are non-negative regularization parameters for ran-

dom effects and fixed effects, respectively. jAj1 is the l1 norm of A. x ¼
ðxT

1 ;x
T
2 Þ

T is adaptive weights, typically x ¼ 1=j~/j, with ~/ denoting

an initial
ffiffiffi
n
p

consistent estimator of / (e.g. the maximum likelihood
estimators). For both fixed and random effects, if we do not wish to
perform variable selection for a particular parameter, we set the corre-
sponding weights to be zero (e.g. if we intend to include all demograph-
ic variables for prediction, the adaptive weights that correspond to
these demographic variables are set to be zero). Maximizing lpð/Þ will
enable variable selection and parameter estimation simultaneously, as
the effects of less important factors will be shrunk to zeros under the
L1-penalty. The regularization parameters (kixi; 8i 2 ð1; 2Þ) are
allowed to vary with the corresponding effect sizes, which is similar to
the idea of adaptive lasso (Zou, 2006). It is worth noting that our selec-
tion scheme is very flexible as it allows for incorporating prior informa-
tion into the adaptive weights, and thus the prior belief with regard to
the importance of each predictor can be considered.

Maximizing Equation (5) can be computationally demanding,
and thus we follow the procedure used in Lin et al. (2013a) and
adopt a two-stage model selection procedure for the penalized
LMM. The details of our proposed algorithm are depicted in
Algorithm 1. We first maximize the penalized restricted log-
likelihood function to select the random effects where a Newton–
Raphson type algorithm is used, and then maximize the penalized
log-likelihood function to select fixed effects. The penalized
restricted log-likelihood function is given by,

QRðhÞ ¼ lRðhÞ � k1jx1hj1; (6)

where lRðhÞ is the restricted log-likelihood function. Note that h is a

ð
PR

r jOrj þ 1Þ � 1 dimensional vector, where jOrj represents the car-
dinality of set Or (i.e. the total number of random effects associated

with the rth region). We do not wish to select r2
0, and thus set x10 ¼ 0.

We apply an iterative procedure to estimate parameters h. As the ob-
jective function (6) is non-differentiable at the origin, similar to (Fan
and Li, 2001, 2012; Lin et al., 2013b), we use a quadratic function to
locally approximate the penalty function. Given the estimates are close
to the maximizer of function (6), if the jth variable at iteration step s
(denoted by hs

j ) is very close to zero (i.e. jhs
j j < d), we set the corre-

sponding penalty function to be zero (i.e. jhjj ¼ 0). Otherwise, we use
a local quadratic function to approximate the penalty function as,

jhjj �
1

2
jhs

j j þ
1

2

ðhjÞ2

jhs
j j
: (7)
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At iteration step sþ1, we set hsþ1
j ¼ 0 if jhs

j j < d. The rest
parameters of hsþ1 are estimated by solving Equation (8), where a
Newton–Raphson algorithm is used.

hsþ1 ¼ argmax
h

lRðhÞ � k1

X
j¼1

x1j
ðhjÞ2

2jhs
j j

Iðjhs
j j � dÞ

( )
: (8)

For the p� 1 dimensional fixed effects b, the penalized log-
likelihood function when the covariance matrix of random effects is
known, is given by,

Qf ðbÞ ¼ �
1

2
ðY � bÞTR�1ðY � bÞ � k2

X
l

x2ljblj: (9)

Maximizing function (9) is similar to solving an adaptive lasso prob-
lem (Zou, 2006), and thus efficient algorithms such as the least angel re-
gression can be used to obtain parameter estimates (Efron et al., 2004).

For the selection of tuning parameters, we apply the BIC-type
criteria given by

BICk1
¼ �2lRðĥÞ þ logðNÞdfk1

BICk2
¼ �2lf ðb̂Þ þ logðNÞdfk2

(

for the random and fixed effects, respectively. Note that lRðĥÞ is
lRðhÞ evaluated at ĥ and lf ðb̂Þ is lf ðbÞ evaluated at b̂ and ĥ. dfk1

and
dfk2

are the number of non-zero elements in ĥ and b̂, respectively.

2.3 Theoretical results
The similarity matrices (Kr

j ) are usually dense matrices for high-
dimensional multi-layer omics data, and thus the variance–covari-

ance matrix of Y (varðYÞ ¼ r2
0In þ

PR
r

P
j2Or

Kr
jr

2
rj) is also a dense

matrix. The outcome vector Y is a single observation from a multi-
variate normal distribution, and thus the standard asymptotic theory
for LMMs used in longitudinal and clustered data analyses is not
directly applicable.

Denote the true values of h as h0 ¼ ðhT
10; h

T
20Þ

T , where h10 6¼ 0 is

a vector that includes r2
0 and non-zero components of homics and

h20 ¼ 0 is a vector of the remaining components of homics. Similarly,

we decompose h into h ¼ ðhT
1 ; h

T
2 Þ

T , with h1 and h2 corresponding to
h10 and h20. Let Nk10

denotes the total number of random effects
that is not zero, and Nk20

the total number of random effects that is
zero. Therefore, h1 is a ðNk10

þ 1Þ � 1 dimensional vector and h2

is a Nk20
� 1 dimensional vector. The total number of random

effects (denoted by Nk) is Nk10
þNk20

. Let the true value of b0 ¼
ðbT

10; b
T
20Þ

T , where b10 6¼ 0 is a p1 � 1 vector whose components are
not zero, and b20 ¼ 0 are the remaining zero components of fixed
effects.

For our model, we use the general theory from Cressie and
Lahiri (1993) and the results from Fan and Li (2001) to establish the
asymptotic behavior of our estimators. The assumptions of our
model are in Supplementary Appendix A.1. The assumptions (S.1)–
(S.3) are similar to those used in Cressie and Lahiri (1993). Together
with assumption (S.4), they yield a central limit theorem for l0RðhÞ
and convergence in probability of l00RðhÞ.

LEMMA 1. Under assumptions (S.1)–(S.4) in Supplementary Appendix A.

1, for any h 2 H, as n!1, we have

n�1=2l0RðhÞ!dNð0; JðhÞÞ and n�1l0 0RðhÞ!p � JðhÞ

THEOREM 1. Under assumptions (S.1)–(S.5) in Supplementary Appendix

A.1, we have

a. If k1=
ffiffiffi
n
p
! 0, then there exists a

ffiffiffi
n
p

-consistent local maximizer of

QRðhÞ.

b. If k1 !1, then for any ĥ1 satisfying jjĥ1 � h10jj �Mn�1=2 and

M > 0; Pðĥ2 ¼ 0Þ ! 1.

c. As k1 !1 and k1=
ffiffiffi
n
p
! 0, we haveffiffiffi

n
p

Jðh10Þ½ĥ1 � h10 þ k1

n Jðh10Þ�1hðh10Þ	!dNð0; Jðh10ÞÞ, where Jðh10Þ
is the upper-left sub-matrix of JðhÞ and hðh10Þ ¼
ðx10sgnðh0

10Þ;x11sgnðh1
10Þ; . . . ;x1Nk10

sgnðhNk10

10 ÞÞ with hj
10 being the

jth element in vector h10 and x10 ¼ 0.

THEOREM 2. Under assumptions (S.1)–(S.5) given in Supplementary

Appendix A.1, we have

a. If k2=
ffiffiffi
n
p
! 0, then there exists a

ffiffiffi
n
p

-consistent local maximizer of

Qf ðbÞ.

b. If k2 !1, then for any b̂1 satisfying jjb̂1 � b10jj �Mn�1=2 and

M > 0; Pðb̂2 ¼ 0Þ ! 1.

c. As k2 !1 and k2=
ffiffiffi
n
p
! 0;

ffiffiffi
n
p

Jðb10Þ½b̂1 � b10 þ k2

n Jðb10Þ�1

hðb10Þ	 !d Nð0; Jðb10ÞÞ, where Jðb10Þ is the upper-left sub-matrix of

JðbÞ and hðb10Þ ¼ ðx21sgnðb1
10Þ;x22sgnðb2

10Þ; . . . ;x2p1
sgnðbp1

10ÞÞ with

bj
10 being the jth element in vector b10.

Theorem 1 says that (i) ĥk1
is a

ffiffiffi
n
p

-consistent estimator, (ii) the
true model can be identified and (iii) ĥ1 is asymptotically normal.
Theorem 2 suggests that given ĥ, we have (i) b̂k2

is a
ffiffiffi
n
p

-consistent
estimator, (ii) the true model can be identified with probability tend-
ing to 1 and (iii) b̂1 is asymptotically normal. From these theorems,
asymptotically our model can correctly identify predictive regions

Algorithm 1. Two-stage procedure for estimating parameters

1: The penalized log-likelihood function is approximately maxi-

mized by a two-stage procedure, where QRðhÞ ¼ lRðhÞ � k1

jx1hj1 (stage 1) and Qf ðbÞ ¼ � 1
2 ðY � bÞTR�1ðY � bÞ �

k2jx2bj1 (stage 2) are maximized to estimate parameters h

and b, respectively.

2: Maximize QRðhÞ to estimate parameters h.

2.1: Get an initial estimates h0, where lRðhÞ is maximized

at h ¼ h0.

2.2: Set the adaptive weights x1 for h with x10 ¼ 0.

2.3: for (t¼1 to a sequence of nk1
tuning parameters of k1) do

while (s � max iteration & hs at k1;t does not converge) do

for (j¼1 to
PR
r
jOrj) do

if (jhs
j j < d) then

Set the penalty term jhjj as 0 and hsþ1
j ¼ 0.

else

Use Equation (7) to approximate jhjj.
end if

end for

Use Newton–Raphson algorithm to maximize

Equation (8),

where L1 penalty is approximated.

end while

Set ĥk1;t
equal to hs at convergence.

Calculate BICk1;t
¼ �2lRðĥk1;t

Þ þ logðNÞdfk1;t

end for

2.4: Choose k1 as k1 ¼ argmink1;t
BICk1;t

.

2.5: Get the parameter estimates ĥ at k1.

3: Maximize Qf ðbÞ to estimate parameters b.

3.1: Get the estimated variance–covariance matrix R̂ðĥÞ.
3.2: Solve an adaptive lasso problem with Y
 ¼ A�1Y ;

X
 ¼ A�1X and ATA ¼ R̂ðĥÞ.
3.3: Choose the tuning parameter k2 such that the BIC defined

as BICk2;t
¼ �2lf ðb̂k2;t

Þ þ logðNÞdfk2;t
is minimized.

3.4: Get the parameter estimates b̂ at k2.

4: Build predictive model with the estimated parameters.
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and their estimated effects are normally distributed. The details of
the proof are shown in Supplementary Appendix A.2.

2.4 Kernel principle component analysis for LMM
MKpLMM can accommodate potential correlations among differ-
ent types of effects (e.g. the potential correlation between genotype
and methylation effects) by constructing kernel functions on mul-
tiple layers of omics data, where the potential correlations are cap-
tured by the kernel matrix. Therefore, in practice, we are not
particularly concerned about the correlation. Nevertheless, here we
still present an alternative approach to model the potential correla-
tions among different effects.

We consider the general model specified in Equation (2). For
simplicity and without loss of generality, we consider only two types
of effects (e.g. genotype and methylation effects) and treat them as
random effects. We assume there are correlations between their
effects. For simplicity, we only consider one region, but the same
procedure applies when the number of regions is large. The model
can be simplified as,

Y ¼ Xdbd þ
XR

r

Or þ � ¼ Xdbd þ og þ om þ �; (10)

where og??= om; og � Nð0;Kgr2
gÞ; om � Nð0;Kmr2

mÞ and e � N
ð0; Inr2

0Þ. Model (10) is equivalent to

Y ¼ Xdbd þ h1ðGÞ þ h2ðMÞ þ e; (11)

where G and M are genotypes and methylation levels in the region.
The functions h1 and h2 are from function spaces generated by ker-
nel functions Kg and Km, respectively.

Following the same idea in Zhao et al. (2018), we use KPCA, a
nonlinear version of PCA to transform h1 and h2 into linear space,
where projections can be made. Consider the eigen decomposition

of the kernel matrix, K i ¼ V iKiV
T
i ; i 2 fg;mg, where V i is the eigen

vector, and Ki ¼ diagðki;1 � ki;2; . . . ;� ki;bi
Þ are associated positive

eigen values. Let Zi ¼ V iK
1=2
i , for i 2 fg;mg. Model (11) can be

written as

Y ¼ Xdbd þ Zgbg þ Zmbm þ e; (12)

where e � Nð0; Inr2
0Þ; bg � Nð0; r2

gÞ; bm � Nð0; r2
mÞ and bg??= bm.

Re-parameterizing the model, we project all layers of omics data
onto one level (e.g. project the methylation data on to the genotype
data) and construct the model as,

Y ¼ Xdbd þ Zgcg þ Z
mcm þ e; (13)

where Z
m ¼ ðI � PgÞZm with Pg ¼ ZmðZT
mZmÞ�1ZT

m. Clearly, Z
m
lays in the space that is orthogonal to the space of Zg. The effects cg

and cm can be considered independent. We can reconstruct kernel
functions based on Zg and Z
m, and build predictive models using the
established theorems presented in this work.

3 Results

3.1 Simulation studies
In all simulation studies described below, we considered three types
of omics data, including gene expression, methylation and genomic
data. To adequately evaluate our method, the simulated datasets
should represent the realistic correlations between features of the
same type (e.g. the co-expression levels of genes in a pathway) and
across data types (e.g. methylation in the promoter regions represses
the expression of a gene). Therefore, we use the InterSIM software,
which simulates multiple interrelated data types with realistic intra/
inter-relationships based on the TCGA ovarian cancer study, to gen-
erate gene expression and methylation data (Chalise et al., 2016).
Since InterSIM software does not simulate genomic data, to mimic
the real human genome, we first extract all single nucleotide variants
(SNVs) from the whole-genome sequencing data from the 1000

Genome Project (The 1000 Genomes Project Consortium, 2015)
and then select SNVs located in the genomic regions with simulated
gene expression and methylation data. We exclude genes on which
there are no SNVs. The details of genes used in the simulation stud-
ies are summarized in Supplementary Table S1.

We map the SNVs and CpG sites into gene regions and simulate
quantitative phenotypes based on causal genes. For all the simula-
tions described below, we randomly choose four genes to be causal
and simulate the phenotypes under various disease models. To ac-
count for the heterogeneous effects from the causal genes, the effect
sizes in each gene are set in the ratios of 1 : 1:1 : 1:12 : 1:13.
Specifically, we simulate the disease outcomes under the general for-
mula as

Yi ¼
X4

k

Ekb
e
k þ

X4

k

Xng

k

j

Gkjb
g
kjIðPkj ¼ 1Þ þ

X4

k

Xnm
k

l

Mklb
m
kl

þ
X4

k

Xng

k

j

Xnm
l

l

GkjMklb
gm
kjl IðPkj ¼ 1Þ þ �i;

where Ek, Gkj and Mkl respectively represent gene expression level
for gene k, genotype at the jth location of gene k and the methyla-
tion level at the lth CpG site of gene k, and be

k; bg
kj and bm

kl are their

corresponding effects. bgm
kjl represents the interaction effects between

the genotype at the jth location and the methylation level at the lth
CpG site of gene k. ng

k and nm
k are the number of SNVs and the num-

ber of CpG sites for gene k, respectively. We set Pkj � Berð0:25Þ,
and thus 25% of SNVs located on the causal genes are set causal.
The details of disease models and effect sizes are summarized in
Supplementary Table S2.

In the first set of simulations, we evaluate the impact of the number
of noise genes on the performance of the method by gradually increas-
ing the number of noise genes from 21 to 96 (i.e. the total number of
genes changes from 25 to 100), where we assume gene expression lev-
els, methylation levels and SNVs from each causal gene all contribute to
disease risk (S7 in Supplementary Table S2). In the second set of simula-
tions, we evaluate the performance of our method under different dis-
ease models. Specifically, we considered eight disease models including
(i) only one type of omics data contributes to disease risk (S1–S3 in
Supplementary Table S2), (ii) multiple types of omics data independent-
ly contribute to disease risk (S4–S7 in Supplementary Table S2) and (iii)
multiple types of omics data jointly contribute to disease risk (S8 in
Supplementary Table S2).

For each setting, we generate 500 Monte Carlo replicates. The
sample size is set to be 1000 with 500 samples served as training
samples. We build prediction models based on the training samples
and evaluate the performance based on the testing samples. We use
Pearson correlations and mean square errors (MSEs) to measure the
prediction accuracy. We compare the performance of MKpLMM
with OmicKrig (Wheeler et al., 2014), a commonly used method for
prediction analysis on multi-omics data. We further present the
results where single-layer omics data is used for prediction. For the
OmicKrig method (Wheeler et al., 2014), we use their default set-
tings with the default kernel functions. For MKpLMM, we use a
gene-based approach (i.e. the genomic region is defined by the gene),
and treat the gene expression levels as fixed effects. We grouped
SNVs and methylation levels according to the gene, and treat their
effects as random effects. We use the linear kernel function for both
SNVs and methylation data to calculate region-wise genomic and
epigenomic similarities, and use Hadamard product between them
to capture the interactions among SNVs and methylation levels. We
further calculate the probability of correctly selecting predictive
genes for the MKpLMM method.

Figure 1 summarizes the Pearson correlations from the first set
of simulations, and the MSEs are presented in Supplementary Figure
S1. As expected, the performance of both methods increases as the
effect sizes increase. For all the situations considered, our method
has better performance than OmicKrig (Wheeler et al., 2014), which
indicates excluding noise regions from the analysis can improve the
prediction accuracy. We also compare prediction performances of
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each method under the settings where (i) all omics data is used for
prediction, (ii) only gene expression data is used, (iii) only SNV data
is used and (iv) only methylation data is used. The results are shown
in Supplementary Figure S2. For both OmicKrig and MKpLMM,
including all available information (i.e. using mulit-omics data) can

substantially improve prediction accuracy. This suggests that jointly
analyzing all omics data can benefit prediction analyses when all
omics data contribute to disease risk. We further summarize the
probability of correctly selecting predictive genes for our method.
As shown in Table 1, although the sensitivity and specificity can be
affected by the total number of noise genes and the effect sizes, our
method can achieve a sensitivity of 83% and a specificity of 92% on
average. All specificities are above 82% and all sensitivities are
above 61% among all the situations considered, indicating our
method has the capacity of correctly selecting predictive genes and
teasing out the effects of noise genes. We consider this important, as
in reality many of the measured genomic regions do have any pre-
dictive effects.

Figure 2 summarizes the mean of Pearson correlations of the pro-
posed method under different disease models where the effect sizes
are set under E4 (Supplementary Table S2) and the total number of
genes equals to 25. The rest results (i.e. effect sizes are under scen-
ario E1–E3 of Supplementary Table S2 and the total number of
genes are 25, 50, 75, 100) are shown in Supplementary Figure S3.
The MSEs are summarized in Supplementary Figure S4. As indicated
from these figures, our method performs robust against different dis-
ease models. When only one level of omics data contributes to dis-
ease risk (i.e. Supplementary Models S1–S3), our method performs
similar to the one where only the relevant omics data that contrib-
utes to disease risk is used. For example, under Supplementary
Model S1 where only gene expression data contributes to disease
risk, our method performs similar to the one where only gene ex-
pression data is used whereas the performance of OmicKrig drops
when all layers of multi-omics data is used. When multiple layers of
omics data marginally contribute to disease risk (i.e. Supplementary
Models S4–S7), our method performs better than the ones where
only single-layer omics data is used. When multiple layers of omics
data affect disease risk through interactions (i.e. Supplementary
Model S8), our method outperforms the methods that only use sin-
gle-layer omic data. Moreover, our method also performs substan-
tially better than OmicKrig under this setting, as OmicKrig assumes
that each layer of omic data contributes independently to disease
risk and thus fails to capture the interaction effects. We consider the
robustness against disease models important, as in practice the
underlying mechanisms of diseases are usually unknown in advance.
Therefore, a method that can adaptive choose kernel functions and
predictive regions to capture various types of effects for risk predic-
tion analyses is practically useful. To assess the selection perform-
ance, we further calculate the sensitivity and specificity for our
method. Although the sensitivity and specificity of the selection can
be affected by the number of noise genes, the effect sizes and the dis-
ease model, our method in general achieves relatively high specificity
for all disease models and its sensitivity tends to be high when there
is no interactions (Table 2 and Supplementary Table S3). On aver-
age, our method achieves a sensitivity of 84% and a specificity of
91% among all the models considered.

3.2 The analysis of Alzheimer’s disease dataset
We analyzed the whole genome sequencing and gene expression
data from ADNI using both the proposed method and OmicKrig
with the default settings (Wheeler et al., 2014). ADNI, including
ADNI 1, ADNI GO and ADNI 2, is a longitudinal study that can be
used to assess the effects of biomarkers at various levels on
Alzheimer’s Disease (AD). Study participants were followed and
assessed over time to investigate the pathology of AD. DNA samples
from study subjects in ADNI 2, including newly recruited subjects
and ADNI 1/GO continuing participants, were obtained and ana-
lyzed using Illumina’s non-CLIA whole genome sequencing. RNA
expression data were collected from subjects in ADNI 2 at baseline
for newly recruited subjects and 1st ADNI 2 visit for ADNO 1/GO
continuing subjects and then yearly. Imaging data (e.g. MR imaging
and PET imaging) were collected at each visit. For our analyses, we
focus on baseline data, and we are interested in predicting PET-
imaging outcomes (i.e. outcomes from FDG and AV45 scans) using
both DNA sequencing data and gene expression data. The sample

Table 1. The probability of selecting the true causal genes under

different number of noise genes

Sensitivity (specificity)

No. gene¼ 25 No. gene¼ 50 No. gene¼ 75 No. gene¼ 100

S7E1 0.762 (0.898) 0.690 (0.939) 0.629 (0.957) 0.611 (0.964)

S7E2 0.919 (0.863) 0.863 (0.922) 0.808 (0.946) 0.747 (0.955)

S7E3 0.959 (0.822) 0.927 (0.904) 0.874 (0.940) 0.857 (0.945)

S7E4 0.962 (0.822) 0.940 (0.906) 0.902 (0.932) 0.842 (0.946)

Model: S7E3 Model: S7E4

Model: S7E1 Model: S7E2

25 50 75 100 25 50 75 100

0.0

0.2

0.4

0.0

0.2

0.4

Total number of genes

M
ea

n 
of

 P
ea

rs
on

 C
or

re
la

tio
n

Method

MKpLMM

OmicKrig

Fig. 1. The effects of the number of noise regions
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Fig. 2. The performance under different disease models
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sizes for genomic data, gene expression and the imaging outcomes
are summarized in Supplementary Figure S5.

We annotated the genetic variants based on GRch38 assembly,
and included a total of 96 genes that have been previously reported
to be associated with AD. The complete list of the genes included in
the analyses is summarized in Supplementary Table S4. After
excluding the SNVs without any variations, 119 144 SNVs are
included in the final analyses. The minor allele frequencies for these
SNVs are presented in Supplementary Figure S6. For each selected
gene, we assessed the correlations between gene expression levels
and the outcome of interest, and also conducted a single-locus analy-
ses for all SNVs included in the selected regions. The results are pre-
sented in Supplementary Figures S7 and S8.

For prediction analyses, we randomly selected 60 subjects to
serve as the testing samples and used the remaining samples to build
predictive models. We evaluated the prediction accuracy based on
the testing samples using Pearson correlations and MSEs. To avoid
the chance findings, we repeat this process 200 times. The prediction
accuracy for AV45 and FDG are shown in Figure 3. For both AV45
and FDG, the Pearson correlations of the MKpLMM are higher and
MSEs of MKpLMM are smaller than the OmicKrig method, sug-
gesting MKpLMM achieves better prediction accuracy than the
OmicKrig method. This indicates that excluding noise genes from
the prediction can improve prediction accuracy. Comparing the pre-
diction models built with omics data and the ones built with single

level data, the FDG and AV45 can be mainly predicted by the gen-
omic data, which is consistent with the analysis results shown in sin-
gle gene analyses (Supplementary Figs S7 and S8). We further
calculated the probability of each gene being selected by MKpLMM
for AV45 and FDG. The MKpLMM achieves robust performance
with regard to the variable selection (Supplementary Table S4).
More than 36% of the genes have never been selected for both
AV45 and FDG, and all the other genes except APOE have been
selected <10%. The APOE gene on chromosome 19, a well-known
risk predictor for AD, has been selected 98% for AV45 and 99% for
FDG. The selection result is also consistent with the results from sin-
gle locus analyses (Supplementary Figs S7 and S8), as most of the
significant signals come from APOE.

3.3 The analysis of chronic lymphocytic leukemia

dataset
We further applied MKpLMM to a study of CLL, which measured
the ex-vivo drug responses, somatic mutation status, transcription
and methylation profiles. The CLL study is designed to investigate
the determinants of drug responses. The study recruited 246 subjects
with 200 being CLL patients. These patients were profiled with 64
drugs in series of 5 concentrations. We are interested in using multi-
omics data to predict drug responses among these 200 CLL patients.
We constructed the drug response variable (i.e. drug viability) based
on the procedures recommended by Dietrich et al. (2017). For each
drug, we aim to predict both the average viability values across all 5
concentrations and across the lowest 2 concentrations. For genetic
data, we followed the same procedure by Dietrich et al. (2017), and
in total we included 11 genes for somatic mutations. For both
methylation and gene expression data, we grouped them according
to cancer pathways listed in the KEGG database and in total 95 270
CpG sites and 4428 gene expression levels are included in the analy-
ses. The sample sizes for each omics data and drug responses are
shown in Supplementary Figure S9, and in total we included 102
patients that have complete data for this analysis.

We assessed the association between somatic mutation status
and the drug viabilities for each drug, and the results are shown in
Supplementary Table S5. We further assessed the association be-
tween gene expression levels of selected genes and the outcomes of
interest (i.e. the average of viabilities across 5 concentrations and
under the lowest 2 concentrations), and the results are shown in
Supplementary Figures S10 and S11. Finally, we assessed the associ-
ation of methylation levels at each CpG site with the drug viabilities,
and the results are shown in Supplementary Figures S12 and S13.
For each of the prediction analyses, we randomly selected 90 sub-
jects to serve as the training samples and used the remaining 12 indi-
viduals as the testing samples. We built the predictive models using
training samples, and calculated the Pearson correlations and MSEs
based on the testing samples. Similar to the ADNI data analyses, we
repeat this process 200 times for each drug response outcome to
avoid the chance finding. The comparisons of prediction accuracies
between MKpLMM and OmicKrig for the average viabilities across
all 5 concentrations and across the lowest 2 concentrations for all
64 drugs are shown in Figure 4. While the multi-omics data have dif-
ferent capacities of predicting the drug responses as shown in
Supplementary Figures S10–S13, our proposed MKpLMM tends to
perform similar or better than OmicKrig. The mean of Pearson cor-
relations (Fig. 4) of the MKpLMM is higher than that of OmicKrig
(i.e. the differences is larger than zero) in most drugs, and the MSEs
(Supplementary Fig. S14) in MKpLMM is usually smaller than those
in OmicKrig (i.e. MSE ratios are <1). This indicates that MKpLMM
has similar if not better performance than OmicKrig in predicting
the drug responses.

4 Discussion

We have presented MKpLMM, a powerful and efficient method for
prediction of complex traits from multi-layer omics data. Our
method generalizes the state-of-the-art LMM-based methods used
for prediction analyses with single-layer genomic data to multi-
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Fig. 3. The prediction accuracy for AV45 and FDG

Table 2. Probability of selecting true causal genes under different

disease models

Sensitivity (specificity)

No. gene¼ 25 No. gene¼ 50 No. gene¼ 75 No. gene¼ 100

S1E4 1.000 (0.990) 1.000 (0.995) 1.000 (0.991) 1.000 (0.986)

S2E4 0.990 (0.939) 0.987 (0.969) 0.965 (0.968) 0.921 (0.979)

S3E4 0.718 (0.588) 0.654 (0.787) 0.622 (0.868) 0.580 (0.892)

S4E4 1.000 (0.923) 0.997 (0.917) 0.986 (0.953) 0.974 (0.958)

S5E4 1.000 (0.670) 1.000 (0.818) 1.000 (0.871) 1.000 (0.900)

S6E4 0.930 (0.847) 0.901 (0.913) 0.855 (0.936) 0.804 (0.945)

S7E4 0.962 (0.822) 0.940 (0.906) 0.902 (0.932) 0.842 (0.946)

S8E4 0.972 (0.924) 0.672 (0.818) 0.575 (0.869) 0.469 (0.902)
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omics data, and yields better prediction performance on several
datasets. MKpLMM is flexible with the input data types and can ac-
commodate various types of effects through multiple kernel func-
tions. MKpLMM has only one tuning hyper-parameter that
determines the sparseness of the model and is chosen to provide bal-
ance between the model complexity and robustness, allowing for the
detection of important predictors. Through simulation studies, we
demonstrate that MKpLMM can successfully identify predictors
with both linear and nonlinear effects, and achieves higher predic-
tion accuracy than the OmicKrig method. Moreover, we also show
that multi-omics data has the capacity to improve prediction accur-
acy compared to single-layer data analyses if analyzed appropriate-
ly. When applied to both drug and ANDI datasets, the MKpLMM
achieves better or similar performance to the other method, and con-
sistently selects the predictive genes.

MKpLMM is a LMM-based method, and thus it shares the advan-
tages of LMM-based methods used for prediction with single-layer gen-
omic data. Other prediction methods, such as support vector machine,
Bayesian networks, penalized partial least square and deep learning are
potential candidates for risk prediction analyses. Nevertheless,
MKpLMM has several features that make it appealing for modeling
multi-layer omics data. First, similar to LMMs and their extensions,
MKpLMM has the capacity to handle high-dimensional data.
MKpLMM assumes that omics similarities lead to phenotypic similar-
ity, and encodes the omics effects through a covariance matrix that
scaled quadratically with sample size regardless of the original data di-
mension. The multi-omics data analysis is under the setting of n� p,
and thus MKpLMM substantially reduces the data dimension. Second,
MKpLMM has the natural advantages of handling heterogeneous data
types. The effects of predictors from various omics-layers are encoded
through the covariance matrices, and thus successfully transform the
prediction problem from heterogeneous high-dimensional feature spaces
to a more homogeneous sample space. This property renders them par-
ticularly suitable for modeling heterogeneous multi-omics data. Third,
the parameters in MKpLMM (i.e. fixed and random effect estimates for
each omics layer) can be selected and inferred analytically. In this work,
we have established the corresponding theory for parameter selection
and estimation for both fixed and random effects under common set-
tings in genetic research. It is well recognized that choosing the subset
of important variables can substantially improve omics data integration
performance. Detailed reviews of existing variable selection/dimension

reduction methods for multi-omics data can be found in Wu et al.
(2019) and Meng et al. (2016). Unsupervised/semi-supervised methods,
such as canonical correlation analysis (Gross and Tibshirani, 2015;
Witten and Tibshirani, 2009) and matrix factorization (Yang and
Michailidis, 2016; Zhang et al., 2012; Zitnik and Zupan, 2015), usual-
ly construct their loss function based on the distances between the
lower-dimensional projected multi-omic matrix and the original data
matrix, and their main focus is to understand the inter-relationships
among multi-omics data. Supervised methods, however, usually con-
struct their loss function based on the distances between the predicted
outcomes and the original outcomes, and thus have a natural advantage
for predicting the phenotypes of interest (Jiang et al., 2016; Zhu et al.,
2016). Our proposed KMpLMM can be viewed as a supervised learn-
ing problem with objective function of the form ‘unpenalized loss func-
tion þ penalty function’. Variable selection of our method is achieved
through penalization, which is widely used in bioinformatic applica-
tions (Wu and Ma, 2015; Wu et al., 2019). Our key contribution is to
establish the analytical theory for parameter selection, especially for
random effects selection, in LMMs under the setting of genetic studies.
This has not been extensively studied in the existing literature (Lin
et al., 2013a) and empirical criteria are often used instead (Speed and
Balding, 2014; Weissbrod et al., 2016). The analytical framework for
model selection is important, as it allows for efficiently and simultan-
eously infer a large number of model parameters including both fixed
and random effects.

MKpLMM is a flexible framework that not only allows for
incorporating prior knowledge about the types of effects through
the choice of kernel functions, but also allows for the selection of ap-
propriate kernel functions in a data-driven manner. For example,
both linear kernel that captures the additive effects and polynomial
kernel with degree 2 that is often used in genetic studies to capture
pairwise interactions can be specified for each genomic region, and
MKpLMM can select the best kernel functions for each region in a
data-driven manner. The selection of both predictive genomic
regions and the appropriate kernels makes MKpLMM robust to
various underlying disease models. As shown in our simulation stud-
ies, MKpLMM has the capacity of capturing different types of
effects from various layers of omics data. Its performance substan-
tially outperforms OmicKrig, when the outcomes are only affected
through interactions. While in this study we only consider the linear
kernel and polynomial kernel with degree 2 for each genomic

Fig. 4. The comparisons of prediction accuracies between MKpLMM and OmicKrig
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region, there is a wide range of kernels in the existing literatures
(e.g. RBF kernel for gene expression data, IBS kernel for genomic
data and saturate pathway models for capturing nonlinear effects)
and they can be incorporated into MKpLMM in a straightforward
manner. Our method also allows for incorporating prior knowledge
on the importance of each region, where the adaptive weights are
specified to reflect domain knowledge. In the absence of prior know-
ledge, our method can use a data-driven manner to determine the
relative importance of each region, where the adaptive weights are
assigned as 1=~/ with ~/ being a

ffiffiffi
n
p

consistent estimator.
While MKpLMM is particularly useful for capturing interactions

between variants located in the same region, distant interactions can
also be exploited for improved prediction through the construction of
pseudo-region encompassing these variants. Under the default settings
of MKpLMM, we do not consider distant interactions because exhaust-
ively evaluating all possible distant interactions can exponentially in-
crease the number of parameters. This can substantially increase the
computational burden, and may low the prediction performance due to
the addition of a huge number of variances into the model. However, in
practice, if a researcher has suspected potential interactions among dis-
tant regions, MKpLMM is capable of exploiting these interaction
effects by manually constructing regions with these suspected variants
harbored. Similarly, the default settings of MKpLMM only focus on
capturing the interactions among different omics layers within the same
region. However, MKpLMM is capable of capturing interactions
among different layers of omics from different genomic regions by con-
structing a similarity matrix where the interactions between different
layers of omics from different genomic regions are considered. This
similarity matrix will be treated the same as the other region-similarity
matrices, and MKpLMM can determine whether the distant interac-
tions can improve prediction in a data-driven manner.

MKpLMM can be viewed as using a composite kernel with a
weighted average of each single kernel, where each weight repre-
sents the effects from the corresponding data layer. The optimal
weight depends on the true nature of omics effects that is usually un-
known in advance, and thus MKpLMM adopts a data-adaptive ap-
proach to estimate and select them. The proposed model is
equivalent to EðYÞ ¼ Xbþ

PR
i ½hiðGi;Ei;MiÞ	, with hi being func-

tion spaces generated by kernel functions Ki. The statistical inference
for LMMs used in genomic research largely relies on the assumption
that the effects from genomic variants are independently distributed.
In this project, we use a similar assumption where we assume hi is
independent of each other. However, this assumption may not hold
for multi-layer omics data. To accommodate the potential correla-
tions, we also developed MKpLMM with KPCA. We use KPCA to
transform the unknown functions hi into linear functions and fur-
ther project the multi-layer omics data onto a common space and an
orthogonal space for each omics layer. This procedure is similar to
the approach that includes one layer of omics data (e.g. genomic) as
covariates and treat information from other layers (e.g. additional
effects of methylation) as additional effects beyond the base layer on
the outcome. While MKpLMM with KPCA can guarantee the theor-
etical ground for statistical inference, it may lose power due to the
linearization. Therefore, in the prediction-based statistical learning,
we recommend to use MKpLMM. However, if the main purpose of
the study is to detect which genomic regions and which layers of
omics data are associated with the outcomes, MKpLMM with
KPCA is an alternative choice.

In our simulation studies, we grouped predictors according to
gene annotations, and thus for each gene region we had only one
variable for gene expression level and multiple variables for both
methylation and genetic predictors. While in simulation studies we
treat gene expression data as fixed effects and the others as random
effects, we can also treat all layers of omics data as random effects
(performance is shown in Supplementary Fig. S15 and Table S6).
Although both strategies can result in prediction models with similar
levels of performance, the computational complexity for a model
with k fixed effects is much less than that of the model with k ran-
dom effects. (The computational time as the number of random
effects increases in shown in Supplementary Fig. S16.) Therefore, we
recommend to treat the omics layer with only one predictor per

region (e.g. gene expression level for each gene) for all k regions as k
fixed effects.

In the illustrations with real datasets, we applied our methods to
both the ADNI and the drug response datasets. As shown in
Figures 3 and 4, the MKpLMM has better or similar prediction per-
formance as compared to the existing method. Moreover, similar to
simulation studies, multi-omics data can help to improve prediction
accuracy if integrated appropriately. For the selection, our algorithm
is in general consistent. For ADNI, the most commonly selected
gene is the APOE, a well-known risk factor for AD.

The work introduced in this paper focuses on continuous outcomes
that are normally distributed. The analysis of binary outcomes within
the LMM framework can be challenging due to the intractable param-
eter inference. While existing studies have demonstrated that LMMs
can achieve reasonable prediction performance when the binary out-
comes are treated as if they were normally distributed (Speed and
Balding, 2014; Weissbrod et al., 2016), it would be interesting to inves-
tigate, within the framework of generalized LMM, other link functions
(e.g. logit and log) for the prediction of outcomes with various distribu-
tions (e.g. binary and Poisson) for multi-omics data analysis.

A potential limitation of the proposed model is that we treat all the
outcomes as if they had the same causes. Most of the common diseases
(e.g. cancer and spectrum disorders) are heterogeneous in nature, and
thus allowing different layers of omics data to contribute differently
according to the underlying causes have the potential to substantially in-
crease prediction accuracy and allow for the identification of sub-
groups of patients that are sensitive to various treatments. A natural
way to incorporate disease heterogeneity for prediction modeling within
the LMM framework is to relax the assumption on the distribution of
effect sizes. Instead of using the common assumption that the variants
within the genomic regions follow a normal distribution [i.e.

b � Nð0;r2Þ], the effect sizes can be assumed to follow a mixture of
multivariate Gaussian with different means and a common covariance
matrix [i.e. b �

P
gpgNðlg;DÞ]. Similar theory and algorithms devel-

oped for MKpLMM can be adapted to infer parameters and be used
for predictions, and this will be a future direction of our research. While
our main focus of this study is to make accurate prediction using high-
dimensional multi-layer omics data, MKpLMM especially MKpLMM
with KPCA has the potential to be adapted for other tasks (e.g. testing
for association with detect disease-associated genomic regions/path-
ways). This remains a potential avenue for our future research.

In summary, we have developed an MKpLMM for prediction
analyses on high-dimensional multi-layer omics data. Through both
simulation and real data applications, we have demonstrated that
compared to single-layer data analyses, integrating multi-omics data
using a data-driven approach to capture potential interactions
among omics data can substantially improve prediction accuracy.
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